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Abstract A number of two-dimensional (ZD) critical phenomena can be described in terms of 
the ZD sineGordon model. Wlh bosonization, several ID quanem systems can be transformed 
to the m e  model. However, the transition of the ZD sine-Gordon model, the Berezinskii- 
Kosterlitz-Thouless (BKT) transition, is essentially different from a second-order transition. The 
divergence of the correlation length is more rapid than any power law, and there are logarithmic 
comtians. These pathological features make it difficult to determine the BKT transition point and 
critical indices from finitesize calculations. In this paper we calculate correlation functions of 
this model using a realIspace renotmaiizarion technique. It is found that several correlation 
functions, or eigenvalues of the carresponding transfer matrix for a finite system, become 
degenerate on the BKT line, including the logarithmic corrections. By the use of this degeneracy, 
which reflects the hidden SU(2) symmetry od the BKT line, it is possible to determine the BKT 
critical line with high precision from a small amount of data and to identify the universality 
class. In addition, new universal relations are found. These results shed light on the relation 
between Abelian and ~n-Abel ian bosonization. 

1. Introduction 

The two-dimensional (2D) sine-Gordon model, which is a natural extension of the Gaussian 
or free-boson model, plays an important role in zD classical and one-dimensional (ID) 
quantum systems, such as~the 2D XY model, 2D helium films, ID quantum spin models and 
I D  fermion models. 

The peculiarity of the phase transition of the ZD XY model (helium films) was first 
noticed with the spin-wave approximation or free-boson model [1,2]. In these theories 
there is no continuous symmetry breaking as required by the Mermin-Wagner-Coleman 
theorem [3-51, but the correlation length ( is infinite at all temperatures and the correlation 
functions decay as power laws with continuously varying exponents. Although this picture 
is qualitatively correct at low temperatures, it is clearly wrong at high temperatures where 
one expects a finite p and the associated exponential decay of correlations. 

Berezinskii [6] and Kosterlitz and Thouless [7] pointed out the importance of vortex 
excitations which essentially modify the spin-wave theories. The vortex structure reflects 
the periodic nature of the spin variable q5 q5+2nn. The vortices carry integer vorticity and 
interact among themselves via a logarithmic ZD Coulomb interaction. At low temperatures 
all of the particles are bound into neutral 'quasi-molecules' with zero vorticity and so the 
couplings of the spin-wave model are changed. At higher temperatures the binding of the 
quasi-molecules decreases and eventually this causes a phase transition. 

Kosterlitz [SI subsequently performed a renormalization group calculation, following 
the method of Anderson et nl [9, IO]. In fact, the renormalization equations are the same 
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for both cases. He found that close to the Berezinskii-Kosterlitz-Thouless (BKT) transition 
point, the correlation length diverges as cc exp(b4). which is faster than any power 
o f t .  Also, logarithmic corrections to various quantities, such as correlation functions and 
susceptibilities, appear at the BKT critical point. These features are entirely different from 
those of the conventional second-order transition. 

The 2D XY model has been treated in the more general framework of the 2D Coulomb 
gas, having two kinds of quantum number: one for ‘charges’ and one for ‘magnetic 
monopoles’ [ll, 121. In this representation, the meaning of the duality transformation, 
which exchanges the roles of electrons and magnetic monopoles, becomes apparent. Several 
models, such as p-clock models, the king model, three- and four-state Potts models and 
the Ashkin-Teller model are mapped in a unified way to the 2D Coulomb gas [13]. 

Kadanoff [14] and Kadanoff and Brown [15] identified correlation functions of 
the Gaussian, eight-vertex and Ashkin-Teller models, whose critical dimensions vary 
continuously on the critical line. In the latter two models, only a few corelation functions 
are known, except at the decoupling point. They first made a comparison of the correlation 
functions of the three models at a special point on each critical line. and then used the 
marginal operator and the operator product expansion to extend these connections to the 
whole critical line. 

The equivalence of the sineGordon model with the ZD Coulomb gas model has been 
shown by several authors [16,17]. Coleman [18] showed the equivalence of the massive 
one-component Thimng model &d the sine-Gordon model, order by order in a perturbation 
expansion, and proved the renormalizability of these models. But his discussion failed in 
the region of 8’ > 8x. Luther and Emery [19], Halpem [20,213 and Banks et a1 [22] 
showed the equivalence between the SU(2) massless Thiiing model and the theory of 
bosons consisting of a free field plus a 8’ = 8n sineGordon model, which corresponds to 
the BKT line. So, there is a hidden SU(2) symmetry at the BKT transition. 

Amit et a1 12.31 developed a more systematic field theory treatment of the renormalization 
group calculation for the sineGordon model. By considering the renormalization of the 
wavefunction, they resolved the problem that Coleman encountered. They calculated the 
higher terms beyond those of Kosterlitz and found a new universal quantity. 

The logarithmic corrections of the k = 1 SU(2)  Wess-Zumin&Witten (WZW) model, 
which has been shown to be equivalent to the pz = 8n sineGordon model, were 
systematically studied by Affleck et a1 [U]. They found the universal relation of the 
ratios of logarithmic corrections to scaling amplitudes. This relation was used by Ziman 
and Schulz [25] for the problem of the S = 

But this SU(2)  symmetry is not apparent in the sineGordon model itself and, 
except for the BKT line, the symmetry is broken to U(1) x ZZ. How does the s i n e  
Gordon model become SU(2)  symmetric on the BKT l i e ?  This problem, including the 
logarithmic corrections, was first treated by Giamarchi and Schulz [26]. They calculated 
the renormalized correlation functions and found that SU(2)  symmetry for these functions 
is recovered on the BKT line. In this case the original model is apparently SU(2) symmetric 
on the pz = Sn fixed point. 

There are several models that can be mapped onto the sineGordon model. Although the 
mappings are qualitatively correct, since coupling constants and cut-offs are renormalized, 
one should use numerical results for the determination of the phase diagram. However, 
near the BKT transition, the divergence  of^ the correlation length is essentially singular and 
logarithmic corrections exist. Therefore, it is very difficult to find the critical point of a 
BKT-type transition. In our previous papers [27,28], by using the level crossing of the 
eigenvalues of the transfer matrix or the corresponding quantum sine-Ciordon Hamiltonian 

quantum Heisenberg chain. 
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in ID, we could easily determine the transition point and identify the universality class. It 
was based on the SU(2)  symmetry on the BKT transition line. 

In this paper we perform a renormalization group calculation of correlation functions 
which have critical dimensions that become marginal on the BKT line. In the 'case when 
SU(2) symmetry appears on the BKT line, the nine eigenvalues split as five-, three- and one- 
fold degenerate, i.e. the SU(2)  multiplets smcture. Otherwise, the five eigenvalues split as 
three-, one- and one-fold degenerate, and it is also possible to determine the BKT transition 
line by the level crossing of the eigenvalues. In addition, new universal relations are found. 
These may deepen our understanding of the relation between Abelian and non-Abelian 
bosonization. 

This paper is organized as follows. In section 2 the model is introduced, and the 
symmetry strnctue is discussed. In section 3 we review the correlation functions which 
become marginal at yo = y4 = 0. In section 4 the renormalization equations are obtained 
for these functions. The hybridization between the marginal field and the cos f i b  field 
is important. In section 5 we consider the eigenvalue structure of the transfer matrix and 
briefly summarize the results of section 4. In section 6 our results are applied to  ID quantum 
and 20 classical systems. Section I is the conclusion. 

2. Sine-Gordon model 

The description of the symmetry and correlation functions of the Gaussian model in this 
and the following sections is based on 129-311. We first consider the 2D Gaussian model 
defined as the Lagrangian 

(WZ. 1 cy -  
ZJCK 

The two-point correlation function'~for @ is 

2(@(rl)@(rz)) = --KRelog(zlz/@) (2) 
where Q is a short-distance (ultraviolet) cut-off and z x + iy, 212 ~= ZI - zz. Strictly 
speaking, a small mass p, should be introduced to serve as an infrared cut-off, such as in 
equation (2.2) in [23]. The logarithmic behaviour of the q5 correlation function shows that 
it cannot be directly interpreted as a physical object. However, the exponential operators 
of @ satisfy 

(exp(ie@(rl)) exp(-ie@(rz))) = lrlz/al-e2K'2 (3) 
so they are candidates for the correlation functions of the critical theory. A convention needs 
to be explained regarding this formula. We did not include the divergent 'self energy' factors 
coming from the terms in the exponent where the Green function is to be evaluated at zero. 
This means that we have really evaluated correlations of the 'normal ordered' exponentials: 
exp(ie@). 

About the symmetry, the Lagrangian (1) is invariant under @ + q5 + constant 
and @ -6. This may be used to restrict configurations, with the identification of 
@ 4 + 2 x / f i ,  implying that q5 takes its values on a circle. In this case, the charges e 
are quantized as e = & (n  an integer). One may also introduce the new scaling fields 
exp(imJz8(x)), which create a discontinuity of @ by Z n m / f i  around the point x .  The 
two-point correlation functions are 
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and furthermore 

axq5 = -a,(iKB) arq5 = a,(iKe). (5) 
The field 6' is called a dual field to 6. Xis model is invariant under the transformations 
q5 + q5 + constant and B + 0 +constant, which implies U(1) x U(1) symmetry. 
The full symmetry group is extended to O(2) x O(2) by the discrete & symmetries 
(2 ,  q j ,  6') + ( z ,  -6, -6') and (2.q5.0) --f (Z, q5, -6'). There is also a dual transformation 
K * 1/K. C$ c B. which exchanges the roles of electric and magnetic excitations. The 
self-dual point K = 1 is nothing but the k = 1 SU(2) x SU(2) wzw model. Another point 
of view is given by a chiral decomposition 

This system is also chiral invariant. 

term cos Aq5. In place of this, we consider the sineGordon Lagrangian 
At this stage, a natural extension of the Gaussian model is to introduce the interaction 

y+ cos&q5 
1 L = -(Vq5)2+ - 

2irK 2T& (7) 

in order to see SU(2) symmetry on the BKT line explicitly. Note that the U(1) symmetry of 
q5 is explicitly broken to the discrete symmetry q5 + q5 + %/d. Since this transformation 
divides the internal circle of q5 into two, the symmetry of this model is 0 (2) x Zz x &.. The 
interaction term breaks the chiral symmetry. Furthermore, the Lagrangian (7) is invariant 
under q5 + q5 + %/A, y+ + -y+ However, calculations in this paper also apply to the 
usual BKT transition, simply by requiring the periodicity q5 I q j  + 2 x j d .  In the latter case, 
the symmetry is O(2) x &. 

Under a change of the cut-off CY -+ e'a, the renormalization group equations for the 
sineaordon model (7) are 

where K = 1 +$yo. For the finite system, 1 is related to L by e' = L. There are three critical 
lines: y+ = O(y0 < 0) corresponding to the Gaussian fixed line; and y+ = zkyo(y0 =- 0) 
corresponding to the BKT lines. In the region between the two BKT lines (Iy+l < yo), all 
the points will be renormalized to the Gaussian fixed line, so they are massless. The other 
region is massive, except on the Gaussian fixed line. 

3. Correlation functions on the Gaussian fixed line 

We review the correlation functions on the Gaussian fixed line (y+ = 0). The correlation 
functions of the Gaussian model are, in general, 

= exp(in A+) exp(im A@) (9) 
where Arg(ri2) = Im log(zi2) is the angle of the T I  - rz vector. Thus, On.,,, has a critical 
dimension qm and a spin ln,m given by 
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The expectation value (i7jOn,,m,(rj)) is zero unless the charge and monopole neutrality 
conditionxizj = 0, c m j  = Oaresatisfied[14,15]; thisreflectstheunderlyingU(l)xU(l) 
symmetry. Then the fields, which become marginal (x = 2) and spin zero at yo = 0 ( K  = l), 
are four fields of the form On,m: 

-(0%0 + 0-2.0) = J z c o s &  Jz Jzi 
00.2 0 0 . 4  (11) 
and four descendent fields, which are expressed as the derivatives of the Oil,*l fields: 

. ,  
1 1 

-(oz.; - 0-z.0) =&sin&$ 

~ l [ B o ~ , ~  + ao-,,,i 
T[ao l , l  - ~ O - , , ~ I  

 BO-^,-^ + ao1,-,i 
(12) 

where 8 - a,, and we take the symmetrized and the antisymmetrized forms of the function 
of +. There'is one more field, namely 

a -  a 
1 I 

+ ao,,-,i 

The correlation functions for On.m have been shown previously. To calculate the 
correlation functions for descendent fields, it is enough to know that 

where j i  = 4(K + (1jK) - 2)  zz y i .  To calculate the correlation function for the M field, 
we introduce the fields 

Then 

(R+(rI)R-(r*)) = 0. 
This means that R* are the fields which have critical dimension one and spin +I, Therefore, 

(M(rl)M(rz)) = (R+(rl)R-(rl)R+(rz)R-(rz)) = expL-4 log(r~z/a)l (17) 
that is, the critical dimension of this field is -always marginal (x '= 2). Here we have 
implicitly taken the normal ordered form M =: R+R- for the marginal field. The field 
M is nothing but the marginal field of Kadanoff et nl [14,15]; and our R+(-) correspond 
to their Fl,o(Fo,l). Note that, although in these nine fields the critical dimensions of 
and their descendent fields vary with the parameter yo. the marginal field M always has 
the critical dimension x = 2. The equations 
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The former comes from Wick's theorem, (17) and (18), and the latter from the neutrality 
condition. 

In the usual BKT transition in which the SU(2) symmetry is not explicit, the only 
difference is that the critical dimension of the four descendent fields is 2 4- 1 + _= 3 at 
yo = y+ = 0. Therefore, only the remaining five fields are marginal at the multi-cntical 
point The usual BKT transition point can be obtained by 'modding out' the SU(2) symmetric 
case with a Z2 symmetry [29,31]. 

4. Renormalization of correlation functions 

In this section we proceed to include the interaction y+ cos &. When we calculate 
correlation functions, divergences appear that come from both short range and long range 
because of the nature of the 20 Green function. To treat such a problem we use the 
renormalization procedure. The correlation functions for (exp(i&) exp(-i.Jii82)) and 
(z/Zsin(&)z/Zsin(fi$z)) (for brevity we will use $1 for @@I)) have been obtained by 
Giamarchi and Schulz 1261. Their results are 

& (exp(-i&) exp(i&))/ = R3 (20) 

where Cj are the integration constants which depend on the regularization. 

4.1. Correlation functions of the marginal and cos&$ felds 

The fields M and z/Zcos& become hybridized by the interaction term as 

To derive this result we have used Wick's theorem 1321, the U(1)  symmetry and (18). Terms 
which are not invariant under the global transformation @ @ +constant should be zero. 
The divergent parts relating to renormalization appear near r3i << 112 and r32 << r ~ z .  When 
r31 < r12 then zGi 2: z Z ( 1  -z31/ziz) and, therefore, the integrand of (21) is approximately 

When r3z << r12, the divergent part of the integrand is 

where we use K = 1 + y0/2. Note that only the terms which contain 1 ~ 3 2 1 ~ ~  contribute to 
the divergence of the integral; other terms, such as zG1, cancel out with the integration. In 
order to treat these divergences, we exclude two circles of radius (Y around rl and rz from 
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the domain of integration over r3. Then, with the change of cut-off a' = ored, the integral 
(21) is renormalized as 

4.19. Near the Gaussianfired line. We first treat the case where ly+/yol << 1. Let us 
consider the two hybridized states between the marginal and cos q'@ fields: 

The orthogonal condition. We consider the condition that the correlation function (Al  B z ) j  
stays zero under renormalization; 

(AIBz)I = (Y+/YO) exp(-4log(r1z/ff))[a(l -2yo log(r12/a)) + 61 

-* 21r J ~ f i [ ( c o s ~ ~ ~ ~ ~ C o S f i ~ )  +ab(y+/yo)Z(l+ 211 

+ higher order terms. (26) 

F = (A1Bz)j exP(4 lO&lz/ff)) exp(yo(O)~)(yo(O)/y+(O)) 

By using y+(l) Y yd(0) exp(-yo(O)l) and YOU) z yo(O), the function defined as 

behaves approximately as a constant a + b for small enough yo and y+. In order to set 
(A1 &) I  = 0, first of all a + b should be equal to zero. In addition, other terms may appear 
in the course of the renormalization. For the infinitesimal trakformation a' = aed, using 
equation (24), we obtain 

(27) 

where F' is the function F with the new value of a'. Notice that in the course of the 
renormalization of yo log(rlz/ff), the term y$log(rlz/a)dl appears: however this term is 
cancelled by the identical term in higher order expansions [S, 261. Thus, the necessary 
conditions for F = 0 under renormalization are 

F = F' + [-by0 + (Yo/Y&&Y+(l+ ab(~+/$o)~)l  dl 

a + b = 0  - 2ay0 + 2&~0(1 +ab(y+/bd2) = 0. (28) 

The solution of these equation yields 

a = -b = &+ O((y+/y~)~) .  (29) 

Renormalized correlation function for the marginal-like field. The correlation function of 
the marginal M-like field is 

(AIAz)f = exp(-4 log(r1~/4)11+ az(r+/yo)z(l -2y0 log(ri2/a))I 

-(y+/yo)&a$/ ~ [ ( C O S & ~ I M ~ C O S & ~ )  + ( l e  2)]. (30) 
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Let us consider the function F = (A1Az)1exp(4Iog(rlz/cu)). In the absence of y+, F 
reduces to the constant 1. For the infinitesimal transformation 01' = ored, using equation (24), 
we obtain 

F = eXP([-za2(Y+/Yoh'o + b z ( Y + l ~ o ) 2 ~ o  + 4&(y+/yo)$ldl) x F' 
= exp(8yo(y+/yo)2 dl) x F'. (31) 

As a result, 

L Jo 

Renormalized correlation function for the cos&@-like peld. The correlation function of 
the cos .&-like field is 

( B I  BZ)I  = exp(-4 W r d c u ) ) [ l -   YO hz(rlz/ff) + b 2 ( ~ + / ~ ~ ) z l  

Let us consider the function F = ( B I & ) I  exp(4log(rlz/a)). For the infinitesimal 
transformation cu' =cued, 

F = exp([-2y0 + (y+/y~)~yo(Zb~ + 4 f i b ) l  dl) x F' 
= expC-2~0 - ~ Y O ( Y + / Y O ) ~ ~  dl) x F'. (34) 

dl [4 + ~ Y O W  + ~ ( Y , ~ Y O ) ~ ) I ] .  (35) 

4.1.2. Near the BKT transition line. Next we treat the case near the BKT transition, where 
y4 = fyo(1 + t ) ,  It[ < 1. With this parametrization, t plays the role of the deviation 
from the critical point, such as (T - T,)/T,. Let us consider the two combinations of the 
marginal and cos A# fields: 

As a result, 
lo(r/u) 

R l = ( B l B z ) , = C ~ e x p  I] - l 

A = M + a f i c o s & #  B = &cos&# + bM.  (36) 

Theorrhogonal condition. The correlation function (AlB2)l is obtained by setting yb/yo = 
1 in the previous subsection. Let us consider the function F = (AI&)I  exp(4log(rlz/a)). 
The conditions for F = 0 under renormalization are 

a + b = O  -2ayo+2f iy+( l+ab)  =o. (37) 
The solution of these equations yields 

(38) 
1 a = -b = i- for y4 = iyo(1 + t ) .  Jz 

Renormalized correlationfunction for the marginal-like field. Let us consider the function 
F = ( A I A z ) ,  exp(4 log(rl2/a))/(l fa'). For the infinitesimal transformation a' = cued, 
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Let us consider the function Renormalized correh&ionfunctionfor the cos&@-likefeld. 
F =   BIB^)^ exp(410g(r12/a))/(l + b'). For the infinitesimal transformation a' =ayea, 

- 2 ~ 0 + 4 A b ~ +  dl F ,  

1+b2 I )  
= exp[-4yo(l+ $)dl1 x F'. 

As a result, 

4.2. Correlation functions of the descendentjields 

The renormalization calculations for the descendent fields (aOl.1 etc) are a straightforward 
extension of the method of Giamarchi and Schulz [26]: 

a2((301,1 + a o - l , l ~ ~ r l ~ ~ a ~ l , - l  + 30-l,-d(r2))1 
= a2dol, l(rl)30-l ,- l(rz))  +a' (ao - l l l ( r l )a~~ . - l ( r~ ) )  

-* 2Z / ~ a 2 ( ~ 0 l , l ( r l ) a o ~ , - , o 2 ) 0 2 , 0 ( r 3 ) ) .  (43) 

The first two terms have been calculated in (14). Therefore, it is enough to estimate the 
divergent part of the integrand of the third term: 

( r 2 ( ~ ~ ~ , ~ ( r l ) a o ~ , - ~ ( r ~ ) 0 ~ . 0 ( r 3 ) )  

log(rlz/cu) - yo1og(r3l/a) - yo log(r32/u) . (4) 

This expression diverges near r31 << rli and '32 < r12. In the case where r31 << rlz then 
1 

LL z&l - z31/z12) and, thus, the divergent p a t  is 

Note that only the terms which contain 
p a t  of the integrand near r32 <<~r12 is of the same form. 

contribute to the divergence. The divergent 

Let us consider the function 

which reduces to the constant 1 when y+ = yo = 0. Then, considering renormalization 
behaviour, we obtain, as before, 

F = exp(-Zy+dl) x F'.  (47) 



5. Eigenvalue structure 

Conformal field theory 133,341 is an efficient method for determining critical dimensions of 
ZD systems. One of the most useful applications of this theory is with respect to finite-size 
scaling. When we denote the transfer matrix of a strip of width L with periodic boundary 
condition by exp(-H), then the eigenvalues E,, are related to the scaling dimension 
x. (= 17.m as [W: 

2nx,  
En(L) - E8(L) = - L (50) 

in the limit of L -+ W. However, this relation is exact only at the fixed point. In general, 
there are corrections resulting from the irrelevant (marginal) fields. 

It is possible to relate the eigenvalues of the transfer matrix to the renormalized 
correlation functions obtained in the previous section. The renormalized critical exponents 
~ . ( l )  are related to the correlation functions as [32]: 

1"Wd 
Rn = exp [ - dlrln(l)] (51) 

and by using equation (SO), we obtain 

(52) 

Although equation (SO) is satisfied under the condition of scale invariance, we use the 
renormalization group to extend relation (SO) to the region where the system size is much 
smaller than the bulk correlation length c. The renormalized critical dimensions are (close 

-- LAE. 1 - X"V) = T%(O.  2R 

to the BKT transition) 

xo(l) = 2- yo(l)(l + 4s 
x l ( l ) = 2 + 2 y o ( l ) ( l + $ t )  
x m  = 2 + y0(i)  
x3Q) = x4(0 = 2 - Y o u )  

and 
(53) 

(54) 



The 2D Sine-Gordon model 5461 

These results mean that on the BKT transition line (for example y&) = yo@)) the 
eigenvalues of the transfer matrix corresponding to the fields xo(l), x3(1), x4(Z) and x7(Z), 
x& become degenerate, as well as those corresponding to xz(l )  and xs(Z), ~ X g ( l ) .  This 
SU(2) multiplets structure reflects the fact that the p2 = 8n sinGordon model corresponds 
to the SU(2) massless Thimng model [221 or to the SU(2) k = 1 wzw model [24]. On the 
BKT line, yo( l )  is renormalized as yo@) cz 1/ log L. The ratios of the logarithmic correction 
terms in xg( l ) ,  xz ( l )  and x l ( l )  are -1:1:2, in agreement with the SU(2) k = 1 wzw model 
1241. Although the convergence of the logarithmic term is very slow, the ratios of the 
logarithmic corrections can be used to eliminate them [25,28]. 

In the neighbourhood of the BKT transition line, in xo(l), q(l)  and xs(l), X g ( l ) ,  x, ( l ) ,  
xs ( l ) ,  terms linear in thedistance t from theBKTlineappear, and theirratios are -$:$:l:-l, 
indicating new universal relations. Moreover, xo(l)  - x@),  for example, is linear in t ,  a 
useful relation for determining the BKT critical line. This describes how the SU(2)  symmetry 
breaks down to U(1) x ZZ in Abelian bosonization. 

Close to the Gaussian fixed line, the only differences are 

xo(0 = ~ 2  - 4Yo(l)(Ym(o/Yo(l))2 X l ( 0  = 2+ YO(W + 2 ~ Y ~ ~ o / Y o ~ l ~ ~ z l  (55) 
and therefore the ratios of the (y4/y,# terms are -4:2. In this case, the difference 
xs(l) - x ~ ( 1 )  is linear in the deviation from the Gaussian fixed line .&, since they are 
interchanged under the transformation C$ -+ C$ + T/&. Furthermore, the difference 
nl(l) - xz(1) is quadratic in y4. This relation may be used to determine the Gaussian 
fixed line. 

Finally, we comment on the symmetry. The symmetry structure of the model (7) at 
yo = yQ = 0 is SU(2)  x SU(2) x Z2. The additional & symmetry is needed to inhibit the 
SU(2) symmetric relevant field [36]. In general, for an SU(n)  critical model, an additional 
En symmetry is necessary to stabilize the massless phase [37]. On the BKT line where the 
chiral invariance is broken, the symmetry becomes SU(2) x ZZ x ZZ. 

In the usual BKT transition in which SU(2)  symmetry is not explicit, the only difference 
is that the critical dimension of the descendent fields is 7, so they are no longer 
marginal. Nevertheless, including the logarithmic term, a degeneracy remains between 
the exp(-+i&) fields and the marginal-like field on the BKT line which can be used to 
determine the BKT transition point from the eigenvalues. 

6. Physical systems 

The sineGordon model can be related to a variety of 1~ quantum or 2 0  classical systems. 
As an example of the sineGordon model with an 0(2) x ZZ x Zz symmetry, we consider 
the S = 1/2 XXZ spin chain with next-nearest neighbour interactions ("NI). For the s i n e  
Gordon model with a simple 0(2)  x ZZ symmetry, we treat a bond-alternation S = 4 
XXZ spin chain. Finally, we treat the 2D classical p-clock model as an example of the 
sineGordon model with an 0(2) x Zz x Zp symmetry. 

6.1. S = 1 XXZspin chain with next-nearest-neighbour interaction 

In our previous works [27,28]. we studied the S = 4 X X Z  spin chain with competing 
interactions: 

, 
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with the periodic boundary condition SL+I = SI, L being the number of spins (L even), 
On the line 

-1 < A < 1, U = 0, the ground state is the spin-fluid state, characterized by a gapless 
excitation spectrum and power-law decaying correlation functions. In the region A > 1, 
01 = 0, this system is Nkel ordered and it has a two-fold degenerate ground state with an 
energy gap [38,391. On the line 01 = 4, the ground state is purely dimerized [40,41]. The 
existence of the energy gap and the uniqueness of the two-fold degenerate ground state have 
been proven [421. The dimer state is characterized by the excitation gap, the exponential 
decay of the spin correlation function, and the dimer long-range order. 

Let us examine the symmetry of the Hamiltonian (56). This model is invariant under 
spin rotation around the z-axis, translation (S:’“) + S:?)), space inversion ($”.‘) --f 

S ~ ~ ~ ~ l ) ,  spin reversal (Sj -+ -ST, @ + -ST), and conjugation (S; + Sz, Si -+ ST), 
Therefore, eigenstates are characterized by the z-component of the total spin (S, = CS;), 
wavenumber (q = 2nk/L), parity (P = kl), spin reversal (T = ?cl), and charge 
conjugation C. The charge conjugation C is redundant because of the identity CPT = 1, 
as will be shown later. For L = 471, the ground state is a singlet (S+ = 0, 4 = 0, P = 1, 
T = 1). The symmetries of several low-energy excitations are classified in table 1. The 
operators in spin representation are also shown. 

This model is exactly solvable on the lines 01 = 0 and 01 = 4. 

’ I  I ’  

Table 1. Identification of eigenstates of the X X Z  spin model in the sineGordon language. 

Symmetries of 
eigenstate Identification in Identification in 

9 s; T P spin language sine-Gordon model 

0 0 1 1  1 1 
x I * -1 (-ips,? OQ, I 
x 0 -1 -1 (- 1) j sj o l ,o+o~ l .o=zcosJ i$  
x o 1 1 (-i)j(s;s;+l + s;s,?+]) 4[0I,o- o - l . ~ ~ ~ = z s i n J i $  
2a/L 0 -1 * exp(Zrij/L)S; a4 
k / L  1 * * exp(~nij/L)S,+ 01.1 
0 2 * 1 00 .2  
0 1 * I +s;s;*l ~ol., + ao-l,l 

0 1 * -1 TS;~S~;~ -S;S;+$+~ tr301.1- ao-,.li 
0 0 1 1 apan of the Hamiltonian M 

0 0 -1 -1 s:(si’,lsj;2 + s;+Is;+2) trOz.0 - 0-2.01 

-cs;s,;l + s;si’+,sj+2 
0 0 1 1 apanofthe Hamiltonian 0 z , e +  0 - a ~  

Next we consider a corresponding sine-Gordon model. After a Jordan-Wigner 
transformation, the model (56) is transformed to the ID spinless fermion system. Its 
continuum limit is a Tomonaga-Luttinger liquid 1431 or, equivalently, a sine-Gordon model 
[44]. Using the same procedure, we associate expressions in the sineGordon model with 
the spin operators (table 1). The marginal-like field and the cos &$-like field are parts of 
the Lagrangian, so they have the same symmetry as the ground state and the corresponding 
spin operators are parts of the Hamiltonian with the same symmetry. Except for the Gaussian 
fixed line, a hybridization occurs between the marginal and the cos& fields. Note that 
the fields in the sine-Gordon model are defined on the infinite plane, whereas operators 
in the spin model are defined on the cylinder. The former can be mapped to the latter by 
f ( z )  = L / 2 r  log(z). The symmetry operation in the sine-Gordon model conesponding to 
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the spin reversal (T) is 

4 -t -4 + n/& e + -0 +n/& (57) 
the operation corresponding to the space inversion (P) is 

@ + - 4 + n / - h  e + e + r / J Z  Z + Z  (58) 

@ + @  0 - t - 0  z + z .  (59) 

and the operation corresponding to the charge conjugation (C) is 

Therefore, successive transformations yield the identity CPT = 1. In addition, theoperation 
corresponding to the translation by one site is 

4+4+nlz/Z e - + o + n / J Z .  (60) 
The symmetry breaking is related to the phase transition as follows. In the spin-fluid 

region, no symmetry breaking occurs because y+ is renormalized to zero. In the dimer region 
y4 + +a? and, therefore, one has a long-range order in the q4 field, whereas correlations 
of 0 decay exponentially. The average value of the ordered field is (4) = n/&. In the 
spin system this means that there is symmetry breaking of the translation invariance. In 
the N€el region y+ + -w, (6) = 0. This corresponds to the symmetry breaking of the 
translation invariance, space inversion and spin reversal. 

LAEI2m A = 0.5, L = 20 0.5 

Dimer 
0.3 

0.2 

0.1 

U 

0.15 0.2 0.25 0.3 
(I 

A 

Figure 1. Phase diagram of lhe S = t "NI model. 
N&l-dimer critical points (+); dimer-fluid critical 
points (0); Gaussian fixed points (0). 

Figure 2. The normalized excitation energies. S: = 0 
(0); SF = il; (+I; = h2 (0). 

We compare the renormalization calculations in sections 4 and 5 with numerical results. 
The whole phase diagram is shown in figure 1. The normalized excitations LAE/2nu for 
A = 0.5 are shown in figure 2. The general behaviour is consistent with the renormalization 
results. One sees that SU(2) symmetry appears on the BKT line [28]. Next we investigate 
the ratios of logarithmic terms. On the BKT line (t  = 0), by using equations (53) and by 
taking the averages 

$[xz(l) + X 3 ( l ) l  f[X1(1) +ad)] (61) 
we can eliminate the contribution of the logarithmic corrections, and at the same time we 
can confirm their ratios. In figure 3 these averages are shown as a function of system size 
L. As expected, they converge to a value of two. The 1/L2 corrections are due to the 
irrelevant field L-z i - z l  (x  = 4)  [35]. The extrapolated values are taken to be two within 
a 0.2% error, compared with the bare values of x, ( l )  (5-15% erior). Finally, we examine 
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A = 0.5, uc = 0.2764 
2.04 +, 

~ 

2.08 

t 

2 
0 0.002 0,004 0.006 

1fLl 

1.98 

1.96 
0.24 0.26 0.28 0.3 

1.98 

1.96 
0.24 0.26 0.28 0.3 

LL 

Figure 3. The ratios OF logarithmic terms. By taking 
the averages &dl)+x3(l)l (0) and f [ x t ( l ) + k ( 1 ) 1  
(t), the logarithmic terms cancel each other. 

Figure 4. The ratios of terms linear in 1. By taking the 
averages ~ [ x a ( l ) + x 1 ( 1 ) i - x 3 ( 0 1  (0). i[xs(l)+x7(1)1 
(+) and i [ i x a ( l )  t q ( l )  + ix3(1)] (U), the f linear 
terms cancel each other. 

the ratios of the terms linear in t of the critical dimensions. From equations (53) and (54). 
by taking the averages 

f b o ( l )  + X l ( l )  + X 3 ( i ) ]  $ [ X s ( l )  +X7(l)l q[:Xo(l) + X s ( l )  4- $X3(l)1 (62) 
the terms linear in I should be annihilated. In fact, as is shown in figure 4, in the 
neighbourhood of the critical point cr, = 0.2764, the linear components o f t  are almost 
absent (the points have already been extrapolated as l/Lz). The coefficients of the terms 
linear in t are at least lo-' less than those in the raw data xn( l ) .  

6.2. Bond-alternation S = XXZ spin chain 

This model is described by the Hamiltonian 

j 
X = c(1 +8(-l)j)($S7+l + S!S,'+, + ASJSj+l). (63) 

After bosonization, we obtain 

The correspondence between the spin model and the sine-Cordon model is the same as 
before (table 1). The symmetry structure in this model is a simple O(2)  x Z.2. At 
A = -I/& and 6 = 0, the critical dimension of sin A$ becomes marginal. Therefore, 
in the neighbourhood of this point, the BKT transition appears 1451. Although higher terms 
such as cos a# exist, we neglect them for simplicity. 

After a simple transformation of the fields # + Z#, B -+ 6'/2, we can use the results 
of sections 4 and 5, except that the critical dimension of the descendent fields is x = $ at 
yo = y+ = 0. The corresponding spin operators, which become marginal at 1'0 = y+ = 0, 
are (-l)jSj, (-l)j(S;S,;l + S,:S&), STSTt1S&2ST+3 (S+ = 4.q  = 0, P = 1) and the 
operator corresponding to the marginal field. 

In the spin-fluid region, y+ is renormalized to zero so that symmetry breaking does 
not occur. As for the region where y# flows to infinity, one has long-range order of the 
$ field ($) + +n/a for y+ + &ca. Via the symmetry considerations of'the previous 
subsection, this corresponds to breaking the translation symmetry. However, since the 
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translation invariance is already broken in the original model, there is no spontaneous 
symmetry breaking in the whole region. 

6.3. p-clock model 

We consider the case of the O(2) x ZZ x Zp symmetric s indordon  model 
1 

I: = -(Vq5)2 + - y+ c o s p f i q 5 .  2rrK 2naz 
This is invariant'under q5 4 q5 + 2n/p l /Z ,  i.e. shifting the circle coordinate 6 by l jp 
times its period (%/l/Z). The cosp&q5 term becomes marginal at y4 = 0, K = 4/p2. 
By parametrizing K p 2 / 4  = 1 + y0 /2 ,  the renormalization equations ire the same as (8). 
There are three fields that are marginal at yo = y+ '= 0, namely, cos p&@, sin p& and 
M .  Their renormalization behaviour has been described in sections 4 and 5. There is no 
degeneracy on the BKT line. However, the renormalized critical dimension for 00," 1'261 is 

m2p2 
8 X&(Z) = - ( 1  - iyo( l ) ) .  

Therefore, the ratio of xo(l)  and x&(l)  is 2mZp2/8 ,  including logarithmic corrections. This 
may be used to determine the BKT critical line because no@) - 16x&(l)/m2pz is linear in 
the deviation t from the BKT line. The ratios of the logarithmic corrections are useful in 
determining the critical dimensions and in checking the consistency. 

When p is even, an additional relation appears. The renormalized critical dimension 
for cos p @ / a  is [261 

x" = 4(1+ i Y O ( l )  + Y" 
%(I + $yo(l)(l+ $t))  for y+ = y o ( l +  t )  

(67) 

and the renormalized critical dimension for sin p@/& is 

t ( I  - iyo( l ) ( l  + 2 t ) )  for y+ = yo(1 +t )  
x'(1) = (68) 

Therefore, the lower part of these relations can be used to determine the BKT line as 
xo(l) - 4x'(1). 

What are the corresponding real systems? One candidate is the p-clock model [12] in 
which the spins at each site can take only p discrete angIes 2 z l / p ,  1 = 1,. , . , p. The 2n 
classical Hamiltonian is such that 

I ? ( I +  ?jyo(l)(l+ i t ) )  for y+ = +t). 

H = - K C  cos - [ l ( T )  k' - l'(T')] 
(T.7') p 

where the sums over T index the sites of a 2D lattice, the symbol {T-, T') indicates a sum 
over nearest-neighbour lattice sites only, and K = J / k B T .  

Jose et d [12] showed that Z+, perturbations on the ZD X Y  model are ikelevant for a 
range of temperatures below the critical temperature Tc of the 2D XY model, provided p > 4 .  
Thus, these models should undergo two phase transitions as a function of temperature. For 
T < TcI, the Zp symmehy is broken and the correlation length is finite. For T,I < T < Te 
the symmetry is unbroken and the correlation length $ is infinite, while for T z Tc2 we have 
a disordered phase with a finite $. Elitzur et nl 1461 showed that this is also the behaviour 
of the pure Z, clock model in which the strength of the above mentioned breaking term 
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is infinite. In considering the Zp invariant Villain-type model [ll], they established the 
existence of the intermediate massless phase using self-duality and Griffiths-type inequalities 
[47,481. 

From renormalization group considerations [12,46] the Zp model corresponds to the 
sine-Gordon model as follows. The upper critical point TCz is described by the usual 
O2 x Zz BKT transition, whereas the universality class of the lower critical point Tcl is the 
O2 x 722 x Zp BKT transition described in this subsection. 

We add here a comment on the antiferromagnetic (AF) Zp clock models with p odd. 
These models have a high degree of degeneracy in the ground state. According to Berker 
and Kadanoff [49], in such a system a critical low-temperature phase may appear, with an 
infinite correlation length, similar to the 2D XY model. In contrast, Cardy [50] claimed that 
AF Zp models with p odd belong to the same universality class as F ZzP clock models, so 
that there is an ordered low-temperature phase with symmetry breaking. However, this 
argument was criticized by den Nijs [51]. At T = 0 the model reduces to the six-vertex 
model at the so called ice point, which means~ that zero temperature would be located inside 
the intermediate massless phase of the GP clock models and, therefore, there is no ZzP 
symmetry breaking. 

7. Conclusions: level spectroscopy 

The idea that the level crossings of the low-energy excitations can be used to determine the 
critical point (hereafter called ‘level spectroscopy’) originates from the work by Giamarchi 
and Schulz [26] who studied how the sineGordon model becomes SU(2)  symmetric on the 
BKT line from the anisotropic phase. This was used for the problem of the S = + NNNI spin 
chain [28]. Another technique, namely taking the appropriate average of the eigenvalues 
to eliminate logarithmic corrections, comes from the work by Ziman and Schulz [25] who 
studied the S = $ isotropic spin chain on the basis of conformal field theory and the 
renormalization group. In this paper we have developed these methods to the case where 
SU(2) symmetry is not apparent on the BKT line by considering the hybridization between 
the marginal and the cos dq5 fields. 

The level spectroscopy method is completely different from the finitesize scaling 
method [52,53]; and for the BKT problem the former is superior to the latter. In finite- 
size scaling one uses the data from several lengths to construct a scaling flow relation 
and to search the fixed point. However, in the BKT problem there are continuous fixed 
points below the critical temperature, so it is difficult to determine the BKT critical point by 
the finitesize scaling. Moreover, there is the problem that the comelation length diverges 
singularly, and of the logarithmic corrections. In fact, as was noticed by Bonner and 
Muller [54], S6lyom and Ziman 1551, and in [27,28], the finite-size scaling method may 
lead to false conclusions for the BKT-type transition, at least for the simple S = i XXZ 
chain where exact results are known by the Bethe ansatz. Naively implemented finitesize 
scaling would predict the critical point Ac = 0.4-0.5, although it is known to be exactly 
Ac = 1. In addition, Roomany-Wyld approximants for the 6 function [56,57], which 
converge remarkably quickly for the conventional second-order transition, converge slowly 
to an infinite limit in the S = $ XXZ case [55]. 

In contrast, in level spectroscopy the symmetry strllcture of the eigenvalues of the 
transfer matrix is used to determine the critical point and to obtain the critical dimensions. 
The renormalization process is already performed explicitly, not by the numerical data. 
Moreover, the singular behaviour of correction terms can be eliminated. In principle only 
the data at one length are needed. Generally there are corrections from the irrelevant field 
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L-2L-,l(x = 4) and, therefore, extrapolations are needed. Nevertheless the convergences 
are extremely fast. 

Finally, although it is possible to consider the sineGordon model with O ( 2 )  x Zz x Z p  
symmetry, the SU(2)  symmetry appears on the BKT line only in the O(2)  x 7& x Z2 case. 
Such a symmetry does not occur in other cases. The usual O(2)  x 4 BKT critical point 
is also special, because at this point the Gaussian and the orbifold model are equivalent 
[29,30]. 
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